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The origin of the boson peak in network-forming glasses
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Abstract. An analysis using a simple model is presented with the aim of providing an
explanation for the characteristics of low-energy excitations in glasses with directional bonds.
The model predicts the appearance of three types of acoustic excitation: weakly, strongly, and
mesoscopically localized modes, and, in addition, recovers the excess density of states at low
energies. We claim that the latter two excitations constitute the two broad bands observed in
Raman spectra, i.e. the lower band (the boson peak) consists of strongly localized modes, and
mesoscopically localized modes contribute to the second higher band at around the Debye cut-off
frequencyωD .

Glasses are extremely interesting objects in the physics of condensed matter, with universal
properties such as theT -linear specific heat below a few K, the thermal conductivity
plateau at around 10 K, and the low-energy broad peak observed in Raman spectra, the
so-called boson peak. TheT -linear specific heat at low temperatures is described well,
but qualitatively, in the framework of the two-level tunnelling model [1, 2]. The origins
for the latter two properties, however, remain a question of considerable current interest
[3]. It is believed that vibrational states responsible for the boson peak contribute also to
the thermal conductivity plateau, because the energy range spanned by the plateau covers
that for the boson-peak spectra, indicating that acoustic excitations must cease to propagate
when their wavelengthλ reaches the nm range [4, 5]. That is, acoustic modes may cross
over to strongly localized modes satisfying the Ioffe–Regel condition,qls ≈ 1, wherels
is the scattering length. Recent inelastic neutron and x-ray scattering measurements for
vitreous silica (v-SiO2) [6] support this view, though opposite results and claims based on
inelastic x-ray scattering have also been reported [7]. Thus, the origin of the boson peak is
still debated—even qualitatively.

This letter provides an analysis using a simple model, on the basis of which we hope
to achieve an understanding, from a qualitative point of view, of the unique properties of
low-energy vibrational states in glasses with directional bonds. The model proposed here
is abstract, but when we discuss the characteristics of low-energy excitations in glasses, its
significance will be clear. Firstly, all that is required is to construct a model exhibiting
strongly localized modes (modes with the localization length`(ω) of the order of the
wavelengthλ(ω) in the acoustic band). Many structural models for glasses have been
proposed [8] since the seminal work by Dyson [9], but there is no satisfactory model giving
rise to strongly localized modesin the acoustic band, except that of fracton excitations in
fractal structures [10, 11]. Our model, described below, predicts the appearance of three
types of excitation in the acoustic band: weakly, strongly, and mesoscopically localized
modes, and, in addition, recovers the excess density of states at low energies observed in
inelastic neutron scattering experiments [5] and derived from specific heat data for glasses
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[12]. We claim that the latter two excitations constitute two broad bands at low energies.
That is, the lower band consists of strongly localized non-dispersive modes, and these
constitute the so-called boson peak. Mesoscopically localized modes are dispersive, and
contribute to the second higher band.

Figure 1. A schematic illustration of the model, where the sizes of the cells are randomly
distributed, having six or eight atoms. The number of side atoms is taken to be 40% of the total
number of main atoms, and they are randomly attached to the two main chains.

The dimensionality is not an important factor for the origin of boson peaks, since
they are observed for polymer glasses (1D), chalcogenide glasses like GexSe1−x (2D), and
glasses such as v-SiO2 (3D). Our model for glasses with directional bonds is a quasi-1D one,
having two main chains with constant massM of atoms, and these are connected to their
nearest neighbours by linear springs with constant strengthK. The central hypothesis of our
model is that, in glasses with directional bonds, there should be a certain number of extra
vibrational states, which we attach to each of the main chains with the massM by linear
springs with the strengthki at sitei. The massM and the force constantki are related to
the characteristic frequency byω2

i = ki/M, where the parametersω2
i are random quantities

and distributed in the range fromω2
min to ω2

max. This distribution originates from the local
distortion and strain in the atomic arrangement in glasses. In other words, the key features
of glasses are incorporated in this distribution. Figure 1 is a schematic illustration of our
model (the broken-ladder model). We should stress that the massM does not correspond
directly to the mass of one atom, but does to that of a group of atoms, e.g. the mass of
monomers in polymers or tetrahedral units in v-SiO2. Since we focus our attention on the
behaviour of the modes with eigenfrequencies below the Debye cut-off frequencyωD, the
above simplification (the centre-of-mass system) does not lose the generality of the model.
Again, we should emphasize that the broken bonds (side atoms) in figure 1 do not directly
correspond to the true atomic arrangement in glasses. These simply indicate some kind of
vibrational state. This should be associated with the vibrational state in the local potential
minima with different curvatures(ki = Mω2

i ) due to the different environments of the
various entities. Andersonet al [2] suggested for v-SiO2 that there are of the order of
2N metastable states denoted by double-well potentials, whereN is the number of SiO4
tetrahedra. They supposed [2] that double-well potentials withlow-enoughbarrier heights
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and short distances for the tunnelling contribute to theT -linear specific heat below a few K;
the number of such potentials is estimated from the specific heat data [1] to be approximately
1/250 (0.4%) of the total number of potentials for the SiO2 group. The number of double-
well potentials withhigh barrier heights, not relevant to the tunnelling, is of the order ofN

(the number of harmonic potentials). Provided that the extra vibrational state introduced in
the present letter corresponds to these entities, it is reasonable that we require the number
of extra vibrational states (side atoms) to be about 40% of the total number of tetrahedra.
We do not take into account the contribution from double-well potentials withlow barrier
heights relevant to the tunnelling, because the number of these is not large, as mentioned
above; that is, the effect of anharmonic potentials is neglected.

The Hamiltonian for our model is given by

H =
∑
i

[
P 2
i

2M
+ p2

i

2M
+ K

2
(Ui − Ui−1)

2+ ki
2
(ui − Ui)2

]
(1)

whereUi andui are the generalized coordinates, representing displacements of atoms (in the
centre-of-mass system) or changes of angular variables. The corresponding momenta are
described byPi andpi , respectively. Capital letters denote quantities relating to main chains
and lower-case letters those for side ‘atoms’. Note that,when localized, vibrations lose their
pure longitudinal or transverse character, and direct coupling to density fluctuations with
neutrons or x-rays probes the one-component projection of the vibrations. Thus, the scalar
approximation given in equation (1) is useful in for discussing the characteristic behaviours
of the dynamic structure factorS(q, ω).

The dynamical structure factorS(q, ω) is expressed in terms of the Fourier transform

Figure 2. The ω-dependences ofS(q, ω) for the model of figure 1 with the total site number
N = 12 000. The force constantski—that is, the curvatures of the potential minima—are
uniformly distributed fromki(min) = 1/4 to ki(max) = 1. The system of unitsM = K = a = 1
is used.
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of the correlation function of density fluctuations as

S(q, ω) = 1

2π

∫
dt e−iωt 〈δρ−q(0) δρq(t)〉

where δρq(t) is the q-component of the density fluctuation. The angular brackets〈· · ·〉
represent thermal averaging. DecomposingUi(t) (and ui(t)) defined in equation (1) into
normal modes, one obtains

δρq(t) = −ieiωλt
∑
i

qei(λ)e
−iqri +O(U2).

Here {ei(λ)} is the eigenvector belonging to the eigenfrequencyωλ. Substitution of this
expression into the definition ofS(q, ω) yields

S(q, ω) = (n+ 1)

ωN

∑
λ

δ(ω − ωλ)
∣∣∣∣∣∑
i

qei(λ)e
−iqri

∣∣∣∣∣
2

(2)

wheren is the Bose–Einstein distribution function andN the total number of atoms. We use
the forced-oscillator method (FOM) [13, 14] to calculateS(q, ω). The method, developed
for calculating densities of states (DOS) and eigenvectors, is based on the principle that
a linear mechanical system when driven by a periodic external force of frequency� will
respond with a large amplitude in those eigenmodes. By taking the external force in the
equation of motion derived from equation (1) asq exp(i�t−iqr), we can efficiently calculate
S(q, ω) for very large systems by means of the FOM [15]. The calculated results forS(q, ω)

are given in figure 2 for the specific parametersM = 1, andK = 1, where periodic boundary
conditions are taken forN = 12 000. The lower and upper limits for the distribution of the
frequencyωi are taken to beki(min) = 1/4 andki(max) = 1. The force constantK (=1)
should correspond to the (largest) stretching force constant (Kr in Keating’s notation) and
the force constantki should be smaller than the strength ofK. It is not easy to meaningfully
estimate the value ofki . However, for instance, the relevant force constant aside fromKr
for glasses with directional bonds is the bending one,Kθ , whose strength is in general about
a half of that ofKr . Thus, the above choice of the parameterski seems to be reasonable.

An important conclusion drawn from figure 2 is that two bands clearly appear in the
spectra. The lower peaks, which broaden with increasingq, are almost independent of the
momentum transferq (non-dispersive). The higher band appears close to the Debye cut-off
frequencyωD. The higher band depends strongly on the momentum transferq, indicating
that the modes contributing are dispersive. This two-band feature at low energies is plainly
observed for network-forming glasses.

In order to establish the characteristics of modes contributing to these two bands, the
density of states (DOS)D(ω) and the localization lengths̀(ω) have been calculated by
means of the FOM and are shown in figure 3 [13, 14]. The definition of the localization
length is

`(ωλ) =
(∑

i

|ei(λ)|2
)2/∑

i

|ei(λ)|4.

One can appreciate from figure 3 that a hump in the DOS appears at aroundω ≈ 0.5,
whose energy range is the same as that of the lower peak of the calculated functionS(q, ω).
This excess density of states in figure 3 should correspond to the hump in the quantity
D(ω)/ωd−1 (since we can taked = 1 in the present case) which has been demonstrated to
appear for inelastic neutron scattering experiments [5] and derived from the specific heat
data of glasses [12]. The calculated results for the localization lengths`(ω) in units of
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Figure 3. The density of statesD(ω) and theω-dependence of localization lengths`(ωλ).
Note thatD(ω) given by the dashed line for our quasi-1D model corresponds to the quantity
D(ω)/ωd−1 for the d-dimensional systems introduced in reference [4]. The calculated results
for S(q, ω) for q = π are given by the solid line. The system of units is the same as that used
in figure 2. The inset shows that the localization lengths are proportional toω−2 below about
ω ≈ 0.3.

the inter-atomic spacing(a = 1) are shown as a function ofω in figure 3, by the narrow
line. The solid line represents the result forS(q = π/a, ω). It is recognized that the
modes forωmin < ω < ωmax are strongly localized, while the modes in the lower-frequency
regime(ω < ωmin) are weakly localized. These weakly localized modes have the frequency
dependencè(ω) ∝ ω−2 as shown in the inset of figure 3; this frequency dependence is the
same as that of Anderson’s weak localization for a simple mass-disordered 1D system. Next,
we present in figure 4 typical mode patterns, to clarify the different characteristics for the
above frequency regions. Figure 4(a) shows the eigenmode withωλ = 0.199 038< ωmin, in
which the displacements of the main and the side atoms have almost the same amplitudes
and vibrate in phase, i.e. the main atom and its side ‘atom’ vibrate without stretching or
shrinking of the bond. These features are the same as in the case of a purely 1D chain
with side atoms [14], for which the appearance of strongly localized modes has been clearly
demonstrated. In contrast with these weakly localized eigenmodes, there appear strongly
localized eigenmodes in the frequency regionωmin < ωλ = 0.599 734< ωmax as shown
in figure 4(b). It should be noted that main and side ‘atoms’ vibrate in anti-phase (i.e. are
optically active). The strong-localization regionωmin < ω < ωmax originates from the
resonance between the main chains and side ‘atoms’. Figure 4(c) shows the eigenmode
with ωλ = 1.911 54 belonging to the higher band in figure 2. The mode pattern possesses
quite different characteristics from those given in figures 4(a) and 4(b), indicating that
only the atoms in the main chains vibrate substantially, and side ‘atoms’ do not follow the
vibrations of the main chains. In addition, these modes are dispersive and are mesoscopically
localized.

We should note that Benassiet al [7] have recently reported inelastic x-ray
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Figure 4. Three types of mode pattern: (a) weakly, (b) strongly, and (c) intermediately localized
modes. The upper and lower plots show the displacements of side atoms. The displacements
of the main chains are given by the central two curves in each panel. (a) The eigenmode with
the eigenfrequencyω = 0.199 038. (b) The eigenmode withω = 0.599 734. (c) The eigenmode
with ω = 1.911 54.

scattering results for v-SiO2, claiming the existence ofdispersivemodes above the energy
corresponding to the boson peak. It seems not sufficient to analyse the dataabove the
boson-peak energy assuming only the existence ofstronglylocalized modes [6] ordispersive
(propagating) modes [7]in the acoustic branch. We have demonstrated in figures 3 and 4 the
coexistence of non-dispersive (strongly localized) and dispersive (mesoscopically localized)
modes in the acoustic branch. An analysis of the scattering data in line with the present
result—namely, incorporating three different types of mode in theacousticband—should
be carried out.

The model proposed here is abstract, but the present work elucidates, for the first time,
the crucial difference between strong and mesoscopically localized modes in the acoustic
band in glasses. In this respect, our simple model will provide a useful way of thinking
about the characteristics of low-energy excitations in glasses with directional bonds.

We are grateful to K Yakubo and M Yamaguchi for many valuable discussions, and to
H J Maris for stimulating discussions on the model treated in reference [14]. This work was
supported in part by a Grant-in-aid for Scientific Research in Priority Areas, ‘Cooperative
Phenomena in Complex Liquids’. One of the authors (TN) benefited greatly from useful
discussions with researchers involved in the above project, especially K Kaji, S Matsuda,
and K Murase.
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